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Abstrsct We describe a semiclassical approach to estimating the absorption of elecfromagnetic 
radiation by small conducting spheres, in which the motion of the charge carriers is ballistic. 
The mdts are strikingly different bemeen the cases of rough and smooth walled particles. For 
a mugh walled panicle the absorption coefficient is proponiond to w2 in the low-frequency 
limit. For a smooth walled sphere the absorption coefficient has a low-frequency cul-off at %, 
the angular frequency of a circumferential ‘whispering gallery’ classical orbit of a &er at the 
Fermi surface. At frequencies above o c  th.e specmm consists of a sequence of ovedapping 
reSonanCe bands which combine to. give an absorption ckfficient proportional to w2 Only for 
w > wc. 

1. Introduction, review and principal results 

I .I. Introduction 
The absorption of radiation by small metallic particles is a subject of considerable interest: 
experimental and theoretical work in this field h& recently been reviewed by Perenboom et 
al [l], Cam et al [2] and Halperin [3]. In this paper we analyse the case where the motion 
of the charge carriers is ballistic (i.e. where the mean free path is much larger than the 
dimensions of the particle); this has not previously received a fully satisfactory treatment. 
We model the.charge carriers (which we will refer to as electrons) by a gas of non-interacting 
fermions characterized by a charge e and isotropic effective mass m: The potential energy 
is taken to be uniform inside the boundary of the small metal p&cle, and infinite outside. 
We give an analysis of this system based on the semiclassical approach [4], in which the 
dynamics of the electrons is modelled by classical trajectories, and the eigenfunctions and 
energy levels are not required. We consider only spherical particles: it will become apparent 
that a theory for arbitrary shapes would not be tractable. Our objective is to give physical 
insights into the problem using this simplified model, and to give some explicit results that 
could be used as a benchmark against which fully quantum mechanical calculations could 
be compared. 

We begin by describing the various types of electron dynamics and frequency regime 
for’this problem. If the size of the conducting particles is large compared to the Fermi 
wavelength, it is meaningful to consider the classical motion of the electrons, which may 
be classified as either diffusive or ballistic. In the diffusive regime an electron is scattered 
many times as it traverses a distance equal to the particle radius a, and can be characterized 
by a bulk conductivity. In very small particles the  motion^ is ballistic, i.e., the electron 
bounces off the walls of the particle many times between internal scattering events. The 
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case of diffusive electron motion is adequately treated in the early classical work of Mie [SI 
on absorption and scattering by dielectric spheres. In this paper we only consider ballistic 
electron motion. 

If the electron motion is ballistic, it is useful to distinguish between chaotic and 
integrable classical motion of the electrons (the relevant concepts are reviewed by Gutzwiller 
161). If the particle has a smooth surface, so that the electrons are reflected specularly at 
the boundary, integrable classical motion will occur for some shapes of the boundary. In 
particular, motion of electrons in a smooth walled spherical enclosure is integrable, because 
angular momentum is conserved. However, some other smooth boundaries are known to 
give chaotic classical motion [7]. If the boundary of the particles is rough, or the internal 
scattering is significant, the electron dynamics is chaotic. The specular reflections required 
for integrable motion can be realized physically if the effective surface roughness of the 
boundary is small compared to the Fermi wavelength. The Fermi wavelength can be very 
large compared to the atomic scale in systems (such as semiconductors or bismuth) with very 
low densities of charge carriers. Our calculations will show a marked difference between 
the absorption spectra of rough and smooth walled particles, which is characteristic of the 
different types of classical electron dynamics. 

Our model for the small metal particle has three characteristic frequency scales. The 
lowest characteristic frequency, which we denote by WO, is associated with the typical 
spacing AE of the single-particle energy levels: WO = AE/fi. The highest characteristic 
frequency is the plasma frequency oP: below op the electron gas is able to screen out the 
applied electric field from the interior of the particle, whereas above up there is a uniform 
internal electric field. Intermediate between these two frequencies is a third frequency us. 
which is the typical frequency of collisions of an electron with the surface of the particle: 
W, = vFfa. where V F  is the Fermi velocity. In this paper we will be primarily interested in 
what happens above the level spacing freqency oo but below the plasma frequency oP We 
pay less attention to the response above the plasma frequency, because the applicability of 
semiclassical methods is somewhat limited in this regime. Analysis of the response at or 
below 

1.2. Brief review of relevant literature 
There is a large theoretical literature on the interaction of small metal particles with 
electromagnetic radiation. To establish connections with the present work, we briefly review 
some of the principal contributions. 

(a) Classical electromagnetic calculations of the absorption and scattering of radiation 
by dielectric spheres were carried out by M e  [SI and Gamett [8,9]. The Mie theory 
is appropriate for the case of diffusive electron dynamics, where the dielectric constant 
is characterized by a bulk conductivity. The extension to ballistic dynamics is unclear, 
although many authors have used an effective conductivity derived by replacing the 
relaxation time r in the Drude model [4] with a time U / U F  characterizing the frequency 
of collisions with the walls. We will term this the effective conductivity ansafz. 

(b) JSawabata and Kubo [IO] have calculated the absorption coefficient quantum 
mechanically for the case of ballistic electron motion, at frequencies above the plasma 
frequency. These results have been extended [ll] and corrected [12] by others. The 
calculation depends on a knowledge of the electron wavefunctions, and for this reason it 
can only be canied through for a smooth walled sphere and some other geometries with 
classically integrable dynamics. 

(c) Gorkov and Eliashberg I131 studied the structure of the absorption coefficient in the 
vicinity of WO using random matrix theory. Their calculation contains a significant error in 
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requires a fully quantum approach, and is outside the range of this paper. 
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that it ignores screening of the extemal electric field due to surface charges [14]: an algebraic 
error has also been corrected [U]. Gorkov and Eliashberg assume that the single-particle 
energy levels have random matrix spectral statistics. More recent work on semiclassical 
quantum mechanics, reviewed by Gutzwiller [6], indicates that this assumption is valid for 
a rough walled particle, in which the electron motion is chaotic, but not for a smooth walled 
spherical particle in which the electron dynamics is integrable. 

(d) A large number of quantum mechanical calculations employing self-consistent field 
methods have been described; some examples are [16]-[181, and references therein. These 
studies have concentrated on exactly spherical geometries, and do not discuss the distinction 
between the behaviour of rough and smooth walled particles. 

(e) There is a close analogy between the dynamics of electrons in small metal particles 
and the motion of nucleons in the collective model of the nucleus. Various workers [19,201 
have discussed semiclassical models for dissipation in nuclear processes that are analogous 
to the approach we adopt here. The principal difference is that the perturbation is a 
displacement of the nuclear surface rather than an extemally applied field. 

1.3. Principal results 

The organization of this paper and its principal results are as follows. 

(a) In section 2 we give a semiclassical discussion of the absorption of energy by an 
electron gas due to an extemal perturbation. The principal result equation (2.6), should 
be very widely applicable in semiclassical analyses of absorption of energy by electrons in 
ballistic systems. 

(b) Section 3 discusses the effect of an extemally applied electric field, with a frequency 
below the plasma frequency, on the energy of electrons rebounding from the wall of the 
particle. Our analysis, based on a Thomas-Fermi approach, appears to be the first treatment 
of the effect of screening of the applied electric field on the dynamics of the electrons. 

(c) In section 4 we consider the case of ballistic electrons confined to a smooth walled 
sphere. We find that the absorption coefficient vanishes below a cut-off o, = uFja, which we 
will term the ‘bounce frequency’. Above o,, the absorption spectrum contains an increasing 
number of overlapping bands, which sum to a quadratic frequency dependence in the limit 
o >> 0,. The coefficient of this quadratic dependence differs from that obtained from the 
effective conductivity ansutz by a material dependent parameter. In the neighbourhood of 
the bounce frequency, the frequency dependence of the absorption spectrum has a complex 
structure reminiscent of that predicted by Gorkov and Eliashberg. Both phenomena are 
related to the crossover between a discrete and a quasi-continuous spectrum, but beyond 
that they are unrelated: our result concems the smooth walled sphere close to a,, whereas 
theirs refers to a rough walled system close to W. 

(d) Ballistic electrons confined to a rough walled sphere are discussed in section 5. We 
describe a realistic model for the rough walled sphere, in which the absorption coefficient 
is proportional to o2 both above and below the bounce frequency 0,. The distinction 
between the rough and the smooth surface illustrates an earlier analysis by one of us [21] 
which predicts that at low frequencies the rate of dissipation should be greatly suppressed 
in systems with integrable dynamics. We also describe a novel mechanism by which the 
absorption of energy is enhanced by the roughness of the surface. 

(e) In section 6 we present, for completeness, a semiclassical analysis of the absorption 
of radiation above the plasma frequency, giving results in agreement with those of the 
Kawabata and Kubo method where they overlap. Our theory only applies if Rw, is small 
compared to the Fermi energy EF, but it is applicable to arbitray geometries. 
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Our results are confined to considering electric dipole absorption. At frequencies 
below the plasma frequency, magnetic dipole absorption may be the dominant process 
in sufficiently large particles with diffusive electron dynamics, because the electric field is 
screened from the interior of the particle. We hope to publish a corresponding semiclassical 
analysis of magnetic dipole absorption with ballistic electron motion at a later date. 

2. Semiclassical model for energy absorption 

We characterize the electron gas by its phase space density f ( r ,  p ,  t), representing the 
number of electrons per unit volume in the single-particle phase spaare at coordinates 
T = ( x ,  y. z) and momenta p = ( p x ,  p y ,  p z )  at time f .  To simplify the notation we will 
abbreviate the set of phase space coordinates by a single symbol a, and write the phase space 
density as f(a, f). Because the electrons are regarded as independent quasiparticles, their 
dynamics is defined by a single-particle Hamiltonian H ( r ,  p ,  t )  = H(a, t). This consists of 
an unperturbed part plus a sinusoidally oscillating term proportional to the applied elechic 
field E: 

H ( a ,  t )  = H&) +€&(a) sinwt. (2.1) 
It will also be useful to consider a coordinate system in phase space where the position a 
is labelled by the unperturbed energy E = H&) and a set of five other coordinates ‘c, 
describing the position on the energy shell at energy E, which we need not specify in detail. 
We will write dar = dE dZ(E) for the volume element in phase space. 

We assume that the system is initially in its ground state, for which the phase space 
density corresponds to the zero-temperature Fermi-Dirac distribution: 

(2.2) f ( a ,  0)  = 2h-30[EF - If&)] 
where EF is the Fermi energy and O(x) is the unit increasing step function. A factor of 
two is included in (2.2) to account for spin degeneracy. After applying the perturbation for 
a timet, the phase space coordinates of an electron initially at a are transformed to a,, and 
the energy of each electron will have changed by a small amount AE(a, t) which will be 
computed by using classical perturbation theory (see figure 1). We must consider how to 
compute the change in the total energy of the electron gas from the change in the energies 
of the individual particles, AE. 

The total energy ET of the electron gas is the sum of the single-particle energies. 
Approximating this sum by an integral, this is 

 ET(^) = I d a  f ( u ,  t ) ~ o ( a )  = 2h-3 d r ~  O [ E F  + A E ( ~ )  - ~o(a)l ~o(a) s 
(2.3) 

Now we subtract the initial total energy &(O) to find the total energy absorbed We can 
replace the measure of the energy surface dC(E) in the integral over C by dX(EF) because 
the integrand of the energy integral is zero except for a small interval of width - A E  close 
to EF: 

AEdt )  = E&) - ET(O) = 2h-3 dC(&) dE E [e(& 4- AE - E )  - @(EF - E ) ]  

(2.4) 

i s  
dC(EF) [ E F A E ( Z )  + iAE2(X)J. 
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The volume V of the phase space enclosed by any surface is constant, i.e. 

sv = 0 = dar [ f (a .  t )  - f(n,O)J (2.5) J 

Comparison with (25) shows that the component of (24) that is linear in AE vanishes, and 
that the energy absorbed is therefore 

AET(~) = h-3 /dX(EF) AE2(E, E p )  = h-3S-2(E~)(AE2(E~)) (2.6) 

where (AE*(Ep)) is the variance of AE for electrons initially at the Fermi energy, and 
Q ( E )  is the weight of the energy shell at energy E 

(2.7) 

In all of the calculations below we find that the energy absorbed grows linearly with time, 
apart from unimportant fluctuations that oscillate with the frequency o of the applied field. 
For this reason it is possible to characterize dET/dt by its cycle averaged value. 

Equation (2.6) has been given in an earlier paper [21], where it was derived under the 
assumption that the energies of individual electrons evolve diffusively. The more general 
derivation above is included because, although this assumption is valid for low-frequency 
perturbations of electrons undergoing chaotic motion 1221, it does not hold for electrons 
undergoing integrable motion. 

The quantity l ~ - ~ S 2 ( E p )  is the density of states at EF multiplied by the volume of the 
particle; as this expression is required for the calculations described later, we quote it here 
for a spherical particle of radius a: 

h - 3 Q ( E ~ )  = a3mkp/3A2?r (7-8) 

where kF is the Fermi wavevector. 
The quantity most frequently used to characterize the rate of absorption is the absorption 

coefficient y .  which is the fractional loss of the energy density of the incident radiation per 
unit distance along the path of the beam, and this is conventionally expressed as a function 
of the volume fraction 3 of the particles. Using the fact that the energy density of the 
electromagnetic field is f&, we find 

where (d&/dt) is the time averaged rate of absorption of energy for a single metallic 
particle. 
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3. Interaction of electrons with the particle boundary 

3.1. Sutfime charges and screening 

In this section we discuss the interaction of the electrons with the external electric field. 
Although we model the electron gas by a system of independent particles described by a 
single-particle Hamiltonian, the potential energy experienced by a single electron depends 
on the phase space distribution of the other electrons. The plasma frequency 

op = [ n ( ~ F ) e * / ~ o m ] ' / *  (3.1) 

where n(EF) is the number of electrons per unit volume at the Fermi energy and m is 
the effective mass, separates two regimes in the response of the electron gas. Below wp,  
the electron gas is able w rearrange itself in order to screen out the applied electric fieId 
from the bulk of the particle, by developing a surface charge. At frequencies above wp 
the electron gas is not able to respond quickly enough to create significant screening, and 
there is a uniform internal electric field, which for simplicity we will assume is identical to 
the applied extemal field E. (The polarkation of the background lattice may have an even 
higher cut-off frequency: this can be taken account of by reducing the internal field by an 
appropriate factor.) 

We do not discuss the behaviour of the system at frequencies close to the plasma 
frequency, as this appears to be very difficult. Instead we describe two distinct models 
for calculating the change in the electron energies below and above wp In both cases we 
find that the energy of the electrons changes discontinuously when they collide with the 
boundary of the particle. In this section we calculate the change 6E of the energy of an 
electron due to a single collision with the boundary when o << op Discussion of the case 
o >> cup is deferred until section 6. 

We discuss the low-frequency behaviour using a Thomas-Fermi analysis, in which the 
electrons move in a classical self-consistent field that incorporates the potential due to the 
other electrons as well as the background potential. The applied electric field E causes a 
small change 6 V in the potential experienced by an elecfson which causes a corresponding 
change Sn in the electron density.[4]: 

Sn = ( ? J ~ / ~ E F ) ~ V  (3.2) 

provided that w << wp. The perturbation is screened out over a length scale & comparable 
to the Fermi wavelength AF. 

The effect of the extemal field is to induce a surface charge 4 per unit area, which is 
related to the potential SV as follows: 

(3.3) 

where L is a coordinate that measures distance normal to the surface of the particle. Classical 
electrostatics shows that for a sphere this surface charge at a given point is 1231 

(3.4) q = 3€0& cos x 

where x is the polar angle of the point relative to the direction of the field. Figure 2 
illustrates the intei'pretation of the angle ,y. Comparison with (3.3) enables the integral of 
SV(z) to be evaluated. 
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‘du 

Figure 1. Schematic illustration of the region of phase 
space filled by the e l m n  gas before and after applying 
a perlurbatlon: a phase space point e with energy 
Hda) = E p  is mapped to a point a, wth energy 
EF f AE(a. 1) .  

3.2. Effect of surface potential on electron energies 
Now we consider the effect of the potential SV(z)  on the motion of the electrons. If 
the electric field is changing while an electron bounces off the boundary of the particle, 
the energy of the rebounding electron will change by an amount SE. We now calculate 
the change in energy of the elect” as it collides with the boundary of the particle and 
encounters the potential SV(z)  induced by the external field. For simplicity we consider 
a simplified model in which the electrons are confined in the volume bounded by two flat 
parallel planes with separation L. The potential therefore only depends on one coordinate 
2, so that the analysis is essentially one dimensional. 

The time dependent electric field &(t) gives rise to a varying potential SV(z)  coswt in 
the vicinity of the surface. In order to evaluate the effect of this time dependent perturbation, 
we expand the wavefunction as follows: 

Figure 2. At low frequencies, the surface charge is 
confined to a m o w  layer of width The angle of 
reflection and the plar angle of the point of impact of 
an electron wjectory are and ,y respectively (these 
angles need not lie in the same plane). 

IW)) = Ccn(t) e x p ( i 9 ~ )  WJ (3.5) 
n 

where the I&) are the instantaneous eigenstates of the Hamiltonian fi[&(t)], and 
t 

9” = f / &’E&’). (3.6) 

The equation of motion of c,(t) is 

If E, and (#nlafi/aEl&J are assumed to be such slowly varying functions of & that they 
can be taken to be constant, and the c,, are small, the solution of (3.7) with the initial 
condition ~“(0) = S,, is 
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with CO, = E,/*. In order to study the scattering process an incoming wavepacket with 
significant conmbutions only from states with energy close to EO is considered. In this case 
the matrix elemenis of arilas can be set to a constant value V. we also assume that the 
perturbation varies slowly compared to the timescale of the interaction of the electron with 
the boundary: the rate of change & can be considered to remain consht  throughout the 
collision process. Using the definition of the evolution operator 

E J Austin and M Wilrlinson 

( @ n I W ) l @ m )  = Icn(t)lcm(O) =SmI (3.9) 

and defining the initial wavepacket as 

(3.10) 

gives 

(3.11) 

Use of the approximate expression for the elements of fi obtained from (3.8) gives 

Converting the sums to integrals, we have 

U ( E ) U * ( E ' )  

E - E' exp[i(E - E')t/h] (3.13) E ( t )  = Eo - ipzFi&V 1 dE 1 dE' 

where E o  is the initial energy of the wavepacket and p is the density of states (for each 
spin state). The normalization of the coefficients a(E,) 2: a. is 

(3.14) 

Differentiating (3.13) with respect to time gives 

(3.15) 
dE - = p2&V s dE / dE'a(E)a'(E')exp[i(E - E')t/h] 
dt 

which can be integrated to give the total energy transferred during the interaction 

6 E  = pz&V dE /dE'a(E)a'(E? Sm dt exp[i(E - E')t/fil 
-m 

= xhpZiV dE Iu(E)IZ = 2nfrp€V. (3.16) 

For the case of an extemally applied sinusoidal field the function & is given by EOWCOSO~ 
so that 

s 
SE = ZxhGp Vu cos of. (3.17) 
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3.3. Thoms-Fermi model for the screening potential 

To calculate the energy absorbed by an electron colliding with the wall of the particle 
using (3.17), it is necessary to model the potential it experiences. A fully self-consistent 
calculation is not analytically tractable. The simplest model of the response of the electron 
gas to the field is the Thomas-Fermi model [4], which assumes, in accordance with (3.2). 
that the induced charge density is proportional to the potential, so that Laplace's equation 
reads 

a2sv e'6n 3e2n 
6V. -- _-= - 

a Z 2  €0 2€0& 

The solution of (3.18) is 

(3.18) 

SV(z) = V~exp(-cu,z). (3.19) 

The inverse screening length cu, can be obtained directly from (3.18) and Volas from (3.3): 

where a0 is the Bohr radius and is the Fermi wavelength. We now compute the matrix 
elements of the potential S V ( z )  between single-electron wavefunctions. The z dependence 
of the wavefunctions for the electrons trapped between planes at z = 0 and z = L is 

which gives matrix elements 

2vo j 'az 
V,j. = - dz exp(-cr,z) sin ( y) sin ( T )  L 

(3.21) 

(3.22) 

where the approximation a,L > 1 has been made, which corresponds to the short range of 
the screening potential compared to the separation of the planes. For states that are close 
in energy, j 2 f, and the required matrix element V can be obtained as 

(3.23) 

Here E, = A2j'lr2/2mLZ is the kinetic energy in the z direction, for a particle at the Fermi 
surface. This is related to the total energy EF by E, = EF cos' @, where @I is the angle of 
incidence of the electron against the boundary. 

The density of states (for each spin state) for a particle of energy E, in a one-dimensional 
box is 

mL 
= hxJ5i-&cos@I' 

(3.24) 
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Using the expression (3.20) for Vo/as, (3.17) now gives the energy transferred as the electron 
interacts with the wall as 

S E = -  -= 

Here r is a material dependent parameter given by 

E J Austin and M Wilkinson 

(3.25) 4 t ? ~  COS 6 dq ~ € @ E F W &  COS 6 COS X COS W t  

3 e n ~  (I- +  COS*^) & enuF(r + cos26) 

(3.26) 

where r, is the radius of a sphere defining the volume occupied by a conduction electron. 
Values of the parameter rJao are tabulated in [4] ,  and show that r is of the order of unity for 
ordinary metals. Comparing (3.20) and (3.26) it is clear that r is proportional to (hF/hs)2, 
where As = l / a s  is the screening length. The energy transferred to the rebounding electron 
is reduced when r is large, because in this limit only the tail of the wavefunction penetrates 
into the region where the potential SV(z)  differs significantly from zero. 

Equation (3.25) is the principal result of this section. It is instructive to compare this 
with the predictions of a purely classical analysis, in which the change in energy of an 
electron bouncing off a surface with potential SV(z,  r )  is 

Using (3.3). we find 

(3.28) 

This result has an unphysical divergence at q5 = fz, corresponding to the electron sampling 
the potential SV for a long time if it strikes the boundary at glancing incidence. The more 
realistic quantum model (3.25) does not have this divergence, but at all angles other than 
@ = L  p, the quantum expression approaches the classical value in the limit r + 0. 

4. Ballistic electrons in a smooth walled sphere 

We now consider the calculation of the energy absorption in the case where the electrons 
move ballistically inside a spherical boundary, and are reflected specularly at the walls. 
First we discuss briefly the classical dynamics of the electrons. 

The trajectories of the electrons are confined to planes that contain the centre of 
the sphere. The motion of an electron in one of these planes is a typical example of 
integrable motion for a system with two degrees of freedom [61. In such a system a 
canonical transformation can be found that maps the phase space coordinates (x', y'. pc ,  p ; )  
into another set of coordinates (e, e', J, I), termed action angle variables, such that the 
Hamiltonian is independent of the coordinates 8.8'. The conjugate momenta J and I are 
therefore constants of motion. For motion in the sphere, the Hamiltonian is independent 
of the polar angle 0 in the (x', y') plane, and the conjugate momentum is the angular 
momentum, J = x'p; - y'p;. We will not need to characterize the remaining action angle 
variables (I, 0') for the radial motion in any detail. 
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The motion of any given electron can be described by a vector angular momentum 
J ,  which is normal to the (x', y') plane and has magnitude 3. The set of six variables 
consisting of the energy E, the anguIar momentum 3 = ( J x ,  Jr, Jz) and the two angle 
variables 0,O' uniqueIy specify the phase space coordinates of an electron. In order to 
evaluate the energy absorption using (2.6). we must perform an integration over the energy 
surface (the level surface of E). This integration is most conveniently carried out using the 
coordinate system described above. In appendix A we show that the measure da of phase 
space volume is 

dci = d'X dE  = ( T / J )  dE d0 de'dJ, dJyd.fz (4.1) 

where r is the period between bounces. 
We now calculate the total energy AET(t) absorbed in time t by summing the 

contributions 6 E  for each bounce of each electron. The energy AE(t)  absorbed by a 
given electron can be obtained as a sum of the energies transferred in each collision. Using 
the expression (3.25) for the energy transferred in a single collision gives 

where N t / r  is the number of collisions with the wall, ,y. is the polar angle of the nth 
reflection, occurring at time tn. relative to the direction of the electric field (the z axis), and 
A =4coE~oE/ent+.  Some elementary geometry shows that we can write 

cos & = sin 0 cos 0, (4.3) 

where S. is the polar angle of the nth reflection measured in the plane containing the 
electron trajectory, and 0 is the angle between the vector J and the z axis. These angles are 
illustrated in figure 3, from which it can be seen that 0. is given by 0, = 2n(a/2-.$)+00 = 
2nqS + 00. Use of these expressions and tn = nr  gives 

(4.4) 

where Re denotes the real part, 801 = 24' - or and SS2 = 2@ + oz. 
It can be seen that a resonance can occur in expression (4.5) if 601 or 802 is close to a 

multiple of 2n. These resonances will dominate the response of the system to the field. In 
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Figure 3. (a) In the smooth walled sphere, the electIOn motion is confined to planes. The polar 
angles in the plane of motion of successive impacis are 0,. (b) The plane of motion is tilted at 
an angle fr - 0 with respect to the direction of the electric field. 

order to proceed further, it is necessary to study the possible resonance solutions. For the 
first term the condition for the kth resonance is 

2 4  + 2 k ~  = (2wa/u~) sin$;;. (4.6) 

Since in - 6; is the angle between the electron direction and the normal to the particle 
surface, we have 0 < $; < 4.. and k can take the values 0,1,2, . . .. In order to understand 
the solutions of (4.6) it is convenient to re-write it in the form 

(vF/ao)($i + kn) =sin$;. (4.7) 

For k = 0 and small 4'. examination of (4.7) shows that there are no solutions below 
o, = uF/a. Above w, one or more solutions exist; as o increases the intercepts vpkrrfao 
move closer to the origin and the number of solutions increases. By substituting $i = in, 
sin&$ = 1 into (4.7) it can be seen that the condition for the kth solution to exist is 
o 3 wn(2k + 1)/2a. When o is sufficiently large, the solutions $; effectively form a 
continuum with all values of $' allowed; the condition for this to occur can be seen to be 
that o is large compared to nwc. For the second term of (4.5) the analysis of the solutions 
can be performed in a similar manner; the analogue of (4.7) is 

(UF/aW)(kn - $;) = (4.8) 

Solutions of (4.8) can be found for k 2 1. The construction of the solutions to (4.7) 
and (4.8) is illustrated in figure 4. The condition for the kth solution of (4.8) to exist is 
0 2 Upn(2k - 1)/2a. Sohtions of (4.7) and (4.8) only coincide if$' = 0 or $' = jk. 

The solutions of (4.7) will be considered first. By defining 66'1, = 86'1 + 2kn, it can be 
seen that near resonance, when 681, is small, the denominator of the first term in the last 
line of (4.5) can be approximated by i60; whilst the second non-resonant term is negligible 
in comparison to the first. Equation (4.5) becomes 

(4.9) 
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, .  

- .  - .  

0. 
0 ' d 2  

9' 
Figure 4. Illuuation of the allowed solutions of (4.7) and (4.8). The solutions 4. corkpond 
to the intersections of the sbaight lines with the curve y = sin). The example shown% is for 
0 = 1 h .  

.. . 

where Im denotes the imaginary part. Substituting into (4.4) gives 

(4.10) 

where N = f / ~ .  The average required to calculate the energy absorbed using (2.6) is 
obtained by averaging over the initial angle 00 ~b the angular momentum J. Performing 
the integral over J is equivalent to integrating ,over q5' and therefore to summing over 'the 
resonances. The average of the square of (4.10) over 00 is 

A' cos2@ sin2 Og(SOik) 
AE2(t) = z(r + COS~@)Z 

(4.1 1) 

where 

(4.12) 

The integral over J is 

where p(J) = r / J  = 2acos@/JuF (see appendix A). Using J = maupsin@, the integml 
in the denominator is 

Similarly, the integral in the numerator is 

(4.15) 
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Denoting the integral over 4' for the kth resonance as Ik and making the substitution 
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(2q - U T  + 2kn)t 
2T Y =  

gives 

(4.16) 

(4.17) 

(4.18) 

where the + sign is used for k = 0 and the - sign otherwise. For large f ,  &#/ay is very 
small, and the function f(4') can be taken out of the integral in (4.17): 

(4.19) 

where 4; is the solution of (4.7). Note that, despite the close similarity to the derivation of 
the Fermi golden rule, we are dealing here with a classical rather than a quantum resonance 
phenomenon. The value of the integral in (4.19) is n; collecting the multiplying factors 
together and summing over all solutions gives 

By using (4.7) it is possible to express fi(@;) in the form 

with A. = OLZ/UF.  Using (2.6) and (2.8) gives 

dEr 2E2m202EZa2 k- 
O Cfl(4;) _ _  ' € 0  F - 

3e2n2h3 k=O df 

(4.20) 

(4.21) 

(4.22) 

which includes all the resonances satisfying (4.7). 
Repeating the analysis for the second set of resonances (4.8) gives an expression with 

the same form (4.21) but with a function f#) obtained from f, by changing the sign of 
A. The final form of dEr/df is therefore 

(4.23) 
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Q Q 
Figure 5. Abswption cwfficient as a fumtion of fruluency for a mcath sphwe wilh speculat 
reflection with r = 1. Figure 5(a) shows the individual resonance bands up to k = 2 
corresponding to soIutions of (4.7) and (4.8) and lhe tofal absorption mfficieni (bold c w e )  
obtained by adding lhe contributions of these bands. Figure 5(b) shows the effcct of many 
overlapping msonances to produce the limiting quadratic behaviour. Scaled uniu are used such 
ulat 6 =U/%, and the asymptotic form (4.27) i s  f = G2 F(T). 

5 6 
Figure 6. As figure 5 with I‘ = 10.0. 

The number of allowed solutions increases as w increases, as discussed above. The 
absorption coefficient has a low-frequency cut-off at U, and consists of a series of 
overlapping bands at frequencies above upr/a.  The form of the bands obtained from a 
numerical solution of (4.7) and (4.8) is illustrated in figures 5 and 6. The lowest-frequency 
absorption band corresponds to a circumferential orbit at its low-fmquency end, and a 
diagonal bounce at its high-f‘requency cut-off. All of the other bands have no upper cut-off. 
The absorption coefficient displays an oscilIatory structure, reminiscent of that predicted 
by Gorkov and Eliashberg 1131 in the vicinity of 00. although the physical mechanism, 
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resonances between the electron bounce frequency and the field frequency, is completely 
different. Such resonances arise from the regularity of the classical motion and would be 
anticipated to occur in any system in which the electron dynamics is integrable. It should 
also be noted that our results show that the effective conductivity ansatz (described in 
section 1.2) is oversimplified. The geometrical resonance effects as displayed in figures 5 
and 6 are more complex than the o2 behaviour predicted by this model, and the absorption 
coefficient is also a function of the material dependent parameter r. 

In the continuum limit o > o,, the sum over the bands can be obtained in analytic 
form. Converting the sum over k (4.23) to an integral over g' gives 
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(4.24) 

for both fi and f2. The integral is independent of o, so from (4.22) the absorption coefficient 
is proportional to o2 in this region. Using (4.22) and (4.24) dET/& can be written 

(4.25) 

By making the successive substitutions x = sin 4'. y = x2, F(r) can be calculated 

It is also possible to obtain the sum over the resonances by an alternative method in the 
limit where the resonances are dense in d, by using a formalism in which sucessive bounces 
are considered to be uncorrelated. This calculation is described in appendix B. 

We conclude this section by making a direct comparison between the absorption 
coefficient obtained from (4.25) and that obtained from the Mie theory using the effective 
conductivity ansafz. Substituting (4.25) into (2.9) gives 

(4.27) 

The Mie theory gives the expression [2] 

y = 9Fo~€o/4noc (4.28) 

where U is the conductivity. The expression generally used for comparing (4.28) with 
experiment is obtained by using the Dmde conductivity U = ne2r/m; for a ballistic system 
the relaxation time r is set equal to the bounce time a/uF. With these substitutions (4.28) 
becomes 

y = 2 7 n F ~ ~ ~ & ~ / 8 e ~ a c m E ~ .  (4.29) 

Comparing (4.27) and (4.29). it can be seen that the'predicted dependence on particle radius, 
Fermi energy and effective mass is identical and the numerical prefactors are very similar. 
However the function F ( r )  in (4.27) introduces an extra material dependent multiplier, and 
reduces the predicted absorption coefficient considerably compared to (4.29). (The function 
F ( r )  is -.. 0.1 for r = 1 and - 2 x  for r = 10.) 
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5. Ballistic electrons in a rough walled sphere 

Unlike the smooth walled case, there is no unique definition of the electron dynamics 
in a rough walled particle. We will consider one specific model which represents an 
extreme degree of roughness. We were not able to find any analytically tractable and 
physically reasonable model with a variable degree of ‘roughness’, which would interpolate 
continuously between this limit and the smooth walled case. 

There is a complication that arises in the case of a rough walled particle, nameiy that 
the surface charge density will be concentrated at ‘prominences’ on the surface, and will be 
very small inside ‘pits’ (see figure 7(a)). It would be a formidable task to obtain a general 
model for this non-uniform charge distribution in terms of the statistical topography of the 
surface. Instead we use a specific model which is analytically tractable. The model we use 
is illustrated in figure 7(b): the particle has a large number of randomly placed ‘whiskers’ 
protruding from its surface, which are tall enough, in relation to their typical separation, 
that the induced surface charge density is confined to the tips of the whiskers. 

Figure 7. On a rough surface (a), ik surface charge is concenualed on prominences. We 
consider a model (b) in which the surface charge is concenmted at the tips of ‘whi&ers’, which 
occupy a fraction 4 of the surface area. 

An electron approaching the boundary will often be scattered back into the interior of 
the particle without reaching the exterior surface itself. From (3.25), we see that only those 
electrons which reach the exterior surface, where the charge density q resides, can have 
their energies modified by the interaction with the wall. This feature of the model simulates 
the effect of the non-uniform distribution of charge density in figure 7(a): in both models, 
many of the electrons colliding with the wall rebound with their energies unchanged. 

If the fraction of the surface occupied by the ‘whiskers’ is r ) ,  the surface charge density 
within the ‘whiskers’ is increased by a factor l /q .  From (3.25), it follows that the energy 
transferred to an electron is increased by a factor l/r) for each bounce in which the electron 
penetrates to the end of a whisker, and the energy transfer is zero for the other bounces. 

Even for a rough walled sphere, the positions of the successive bounces are correlatd it 
is clear that the successor of a given bounce is more likely to be in the opposite hemisphere 
than the same hemisphere. If the surface is rough, widely separated bounces may be 
assumed to be uncorrelated. If the density of whiskers r )  is small, the bounces upon which 
the electron penetrates to the end of a whisker, and rebounds with a changed energy, will 
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almost all be widely separated, and their positions can therefore be regarded as uncorrelated. 
We can therefore write 
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where AE(r) is the energy transferred to an electron in time f, 6E is the energy transfer at 
an individual bounce, and N is the expected number of bounces resulting in a transfer of 
energy occumng in time I. The average. in (5.1) is taken over all possible positions of the 
bounces, with all possible angles of incidence. 

The number of bounces occumng in (5.1) is N = qt/ (r) ,  where ( r )  is themean interval 
between bounces for ergodic motion; the factor of q accounts for the fact that most bounces 
do not result in any energy transfer. The mean interval ( r )  is 

where we have used (4.1) and J = m a w  sin@, r = (2a/vf)cos6. 
The expression for (SE2) is similar in form to (3.24). apart from dimensionless 

geometrical factors, but contains a factor 1/11’ to account for the enhanced surface charge; 
hence 

(5.3) 

The average over @ is performed in the same way as for (5.2) 

where 

can be expressed in terms of a hypergeometric function [24]. 

substituting for A gives 
Setting (cos2Wt) = 1/2, (cos2x) = 1/3, using these results with (2.6) and (2.8). and 

The absorption coefficient is proportional to o2 at all frequencies; there is no low-frequency 
cut-off as is found for the smooth sphere. The effect of the factor of l / q  is to considerably 
enhance the absorption coefficient compared to that for a smooth sphere. This enhancement, 
which is due to the increased charge density on surface prominences, will be a feature of 
any model for a rough sphere. It could play a role in explaining the anomalously large 
absolption coefficients that are often observed in suspensions of small metallic particles 
[=I. Other models, typically involving clustering of particles, have also been proposed to 
explain this effect; references are given in [25]. 
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6. Semiclassical model for absorption above the plasma frequency 

In this section we present a semiclassical theory for the absorption of radiation at frequencies 
above the plasma frequency. This problem was originally treated by Kawabata and Kubo 
[lo], who gave a fully quantum mechanical analysis. They found that the absorption depends 
on the parameter v = hw/EF which is related to the parameter r introduced in section 3 
for the free electron model 

(6.1 ) 

Our semiclassical method is only applicable in the limit v -P 0, and it therefore would not 
be relevant to any real system. We include this calculation because we feel it gives useful 
physical insight, and because the correspondence with the fully quantum calculation, in the 
regime in which the theories overlap, is reassuring. 

At frequencies above U+ the electric field penetrates the interior of the particle. Because 
the plasma frequency is much higher than the bounce frequency CO,, the electron is 
accelerated and decelerated many times as it mverses the particle: the change in the 
momentum in the direction of the applied field oscillates cosinusoidally: 

v2 = 4&,/wp) 2 r. 

SP = (e%/o)iicosot (6.2) 

where k is a unit vector in the direction of the electric field. There is a corresponding 
oscillation of the energy of the electron about its mean value. 

The mean value about which these oscillations occur changes when the election strikes 
the wall of the particle. Consider what happens when an electron strikes the boundary of 
the particle at time t'. The instant before it strikes the wall the momentum of the e!ectron 
is 

p = p o + ~ p = ~ o + ( e ~ o / o ) k c o s o t * .  (6.3) 

The instant after the impact its momentum is 

p"= ~ p o  + (e&/o)Rk cos cot' (6.4) 

where Ra: is the vector obtained by specular reffection of the vector z (figure 8). After the 
impact, the time dependence of the momentum of the electron is given by 

p = ph + (e&O/w)k cos wt (6.5) 

i.e. the momentum oscillates about a new mean value p'' Setting t = f' in (6.5). and 
equating with (6.4), we find 

pb = ~ p o  + (e&o/w)(Ri - i)cosot* = ~ p o  + ( 2 e ~ o / w ) ( i  ii)bcoswt* (6.6) 

where A is the inward unit vector normal to the boundary at the point of impact. The 
change in the mean energy of the electron after the collision is 

8E = (p'i - pi)/2m = (-2e&,3/mo)(k i i ) ( p o .  6) coswf*. (6.7) 
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Figure 8. Illustrafion of vectors used in the discussion 
of the response above the plasma Nuency in section 
6. 

We must sum the contributions 6 E  to the change in the energy of an electron given 
by (6.7). First we specialize this formula to the case of a spherical boundary. The factor 
@O -A) is equal to mucos@, where @ is the angle of incidence of the electron. The factor 
(k . A) is equal to cos,yn, which is given by (4.3). The energy transferred in a single 
collision is therefore 

6 E ,  = (2evE~/o)cos@sinOcos8,sinot,. (6.8) 

The absorption coefficient can be obtained as a sum of resonance terms as described in 
section 4.  Because o is very large compared to the bounce frequency, the resonances are 
dense in @, and the discussion of appendix B shows that we are justified in treating these 
6 E  as a set of uncorrelated random variables. The total change in the energy of a given 
electron is therefore treated as a random variable with mean value zero and with variance 

where we have approximated the number of bounces by N Y tit. To find the total energy 
absorbed using (2.6) we must compute (AE') ,  the variance of the change of the single- 
electron energies averaged over the whole of the energy shell. The average over the angle 
variables 8 and 8' has already been computed in (6.9). It remains to average over the 
angular momentum J using the measure (4.1). we find 

(&E2)  = / d J S ( A E 2 ( J ) )  (6.10) 

The denominator of this expression was evaluated in (4.14). The numerator is 

2n J,' d 0  sin3 0 d J J cos2 @ (6.11) 

4xmza2v: 
3 .  

d@ cos3 @ sin@ = 
8xm2a2u: [I2 

3 
- 5 1 d J  Jcos2@ = - 3  

The result for ( A E Z )  is 

(6.12) 
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Substituting this result and the expression for the density of states at EF (2.8) into (2.61, the 
rate of change of energy is found to be 

(6.13) 

This can be directly compared with the quantum mechanical calculation [I21 using the 
Kawahatc-Kubo method. ([I21 corrects errors in the original paper [IO].) The quantum 
mechanical result for the imaginary part E&J) of the dielectric constant is 

(6.14) 

In the semiclassical limit U = ho/EF < 1, the expression given in [12] for H ( u )  has the 
property H(u) - U as U --f 0. In this limit we therefore have E&)) = 4 t ? E ~ / ~ r F i ~ o ~ a .  
Using the relationships 

E2 = (4R/OJ)U (6.15) 

where U is the conductivity, and 

dET/dI = $u&~V (6.16) 

where V is the volume of the particle, gives an expression identical to (6.13). 
Our semiclassical computations are only valid if the quantum energy ~ O J  is small 

compared to the Fermi energy EF. Because the calculation applies when OJ >> o+, we must 
have up = huJp/EF << 1 for the theory to be applicable, whereas up is of the order of unity 
for most metals, and is large in materials with fewer charge carriers. Unlike the quantum 
mechanical calculations, which require expressions for the wavefunctions, our calculation 
can readily be generalized to other particle shapes with either integrable or chaotic classical 
motion. 
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Appendix A 

In this appendix we S ~ D W  that the Jacobean K of the transformation between the 
canonical phase space coordinates (r,  p) = (x, y. z ,  p x ,  pr, PJ and de  set Of c o d h t e s  
(6, e’, Jz, J y 9  J,. E)  is 

The electron orbits are. confined to planes containing the origin with coordinates (x’, y’), 
and corresponding momenta ( p i ,  p ; ) .  The primed and un-primed coordinates are related 
by rotation matrices: 

9. = E(@,  Ok‘ p = &o, 6)p’ B ( 0 ,  @) = &(@)q@) (A.3 
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where E,(@) and E(@)  are. rotations about the y and z axes, so that 
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(A.3) ) ( - sin 0 0 cos 0 

cos 0 cos Q, sin @ sin 0 cos Q, 
E ( @ ,  9) = -cos@sinQ cos@ -sinOsinQ . 

Note that 0 and Q, are polar cooordinates for the dimtion of the angular momentum vector, 
i.e. ( J x ,  Jy, J,) = ( J  sin 0 sin 0, J sin 0 cos Q. J cos e), and therefore 

dJ, dJ, d J, = J 2  sin 0 d J dO d@. (A.4) 

Setting z‘ = pi  = 0, we obtain the following transformation between the ( I ,  p )  coordinates 
and the (x’, y’, p i ,  p;. 0, Q,) coordinates: 

Computing the Jacobean KI of this transformation, we find 

We can now compute the required Jacobean K quite easily. Because the Vansfomation 
from the (x‘, y‘, p i ,  p;) variables to the action angle variables (e,@’, J ,  I) is canonical, it 
is volume presewing, and we have 

A standard result in classical mechanics shows that d I / d E  = r ,  where r is the periodicity of 
the angfe variable 8‘ which is conjugate to I; for the system we consider that this periodicity 
is simply the period between between collisions with the walls. Combining (A.4). (A.6) 
and (A.7) we find 

K = K~Kz/J’s in@=r/J  (A.8) 

as required. 

Appendix B 

In this appendix we give an alternative derivation of the limiting form of the sum over the 
resonances (4.23) in the limit where the resonances are dense. We show that the limiting 
form can be obtained by assuming that successive bounces are uncorrelated. Although 
this assumption is physically incorrect, it leads to the same result as the limiting integral 
expression of the type (4.24). The result dces not depend on any specific features of the 
dynamics of a particle bouncing inside a smooth sphere, and could be generalized to other 
boundaries with integrable dynamics. 
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Equation (4.2) can be written in general form as 

where F(r) takes into account the variation of the energy transfer as a function o f t ,  and the 
number of bounces is N = t / r .  (The dependence on the variable 00, which does not affect 
the general discussion, has been removed.) The final expression for (AE') is obtained by 
averaging the square of (B. 1) over all values of r: 

As in the main text, the sum can readily be obtained as 

The first term has resonances when 

For this term 

In order to perform the integral in the numerator of (B.2). the sum in (8.5) can be replaced, 
when the resonances are closely spaced, by a density of resonances p ( r )  

(B.6) 

which is obtained by differentiating the resonance condition (BA). Including the identical 
contribution from the second term in (B.3). substituting for N and integrating over all values 
of r gives 

1 
2 z  xw; - 0 5 )  + p ( r )  = --KO - a w r ) i  

k 

CS(& - or) 
x 

This expression is exactly the same as that which would be obtained from (B.l) and 
(B.2) under the erroneous assumption that successive bounces are uncorrelated so that 
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(cos’not) = (cos2,4) = 4. In this case, squaring (B.I), performing this averaging, ahd 
integr&ing over 2 reproduces (B.7) directly. 

We illustrate- this result 6y rederiving (4.25) under the &sumptioh that the bounces are 
uncorrelatd using (4.2) and (4.3) and assuming uncorrelated bounces gives 
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This expression must be averaged over phase space by integrating over angular momentum 
as described in detail in section 4. The result is 

where @(J)  = r/J and D is the integral (4.14). The integral in (B.9) can be shown to 
have the value 2mZa2uFF(r), where F(r) is the function defined in (4.24). Combining 
(B.9) with (2.6) and (2.8) gives 

(B.10) 

which is identical to (4.25). Note that the result is obtained much more rapidly under the 
assumption that the bounces are uncorrelated, and that the derivation only requires that the 
resonances are dense. 
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